135=-16t^2+169T+100

Simple and best practice solution for 135=-16t^2+169T+100 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 135=-16t^2+169T+100 equation:



135=-16t^2+169+100
We move all terms to the left:
135-(-16t^2+169+100)=0
We get rid of parentheses
16t^2-169-100+135=0
We add all the numbers together, and all the variables
16t^2-134=0
a = 16; b = 0; c = -134;
Δ = b2-4ac
Δ = 02-4·16·(-134)
Δ = 8576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8576}=\sqrt{64*134}=\sqrt{64}*\sqrt{134}=8\sqrt{134}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{134}}{2*16}=\frac{0-8\sqrt{134}}{32} =-\frac{8\sqrt{134}}{32} =-\frac{\sqrt{134}}{4} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{134}}{2*16}=\frac{0+8\sqrt{134}}{32} =\frac{8\sqrt{134}}{32} =\frac{\sqrt{134}}{4} $

See similar equations:

| (1-3x)/(2x)=0 | | 10(3–x)=20 | | 1/x+1/x^2=3/4 | | x+10/2=15 | | y+6=50 | | 47+x=-23 | | (3x-1/3)-(x/2-5/3)+6-1/2=14/3 | | 7x-4+(3x+15-18x)/3=(8x+4+16x)/4-13x-(8+2x+12)/2+x+1 | | 7y^2+6y+5=0 | | 72+x=-23 | | 2p+3=5(1-4p)/7 | | 10x+22=8x−14 | | 10000=12.56(h) | | (2y+1)/5=3 | | 5-4(3-2p)=4p-5 | | 10=12.56(h) | | 1x^2-0,5+0=0 | | 2.25x^2+4x=0 | | 9c|24=3 | | x+3x5=24 | | 4{s}^{3}+15{s}^{2}+18s+5=0 | | X^2+22x=-96 | | 15x^2-14x+21=0 | | 3x/4-3/2=x/3-6/5 | | √|x|^2=x | | 14x=9=131 | | 4(x+3)+5x=x-12 | | 3/x-2/3=1 | | y/26=104. | | 10+11a=109 | | 2w2=+5 | | 130=3(30+q)+10 |

Equations solver categories